Appendix C

NW Clairmont ASP Servicing Report

V3 | Visio, Vertere, Virtute ... The Vision to Transform with Excellence

****\]

NORTHWEST CLAIRMONT ASP SERVICING

COUNTY OF GRANDE PRAIRIE NO.1

PROJECT NO.: 151-04424-00 DATE: NOVEMBER 2017

WSP SUITE 1200, 10909 JASPER AVE EDMONTON, AB T5J 3L9

T +1 780-466-6555 F +1 780-463-0177 SUITE 1200, 10909 JASPER AVE

EDMONTON, AB T5J 3L9

T +1 780-466-6555 F +1 780-463-0177 WSP.COM November 17, 2017

Mr. Mathew Konowalchuk **COUNTY OF GRANDE PRAIRIE NO. 1** 10001 - 84 Avenue Clairmont, AB T0H 0W0

Dear Mr Konowalchuk

Northwest Clairmont ASP Servicing Subject:

WSP is pleased to submit the Northwest Clairmont ASP Servicing report.

The servicing report identifies the proposed servicing for water distribution, sanitary collection and stormwater management in support of the Northwest Clairmont ASP. The proposed servicing schemes are for ultimate development of the ASP, including approximately 1,650 hectares. The sanitary servicing has also allowed for contributions from areas outside the ASP as indicated in the 2013 Water Distribution and Wastewater Collection System Master Plan.

Yours sincerely,

Blair E. Raymond, M.Sc., P.Eng. Water Resources Engineer, Infrastructure

/ber Encl. WSP ref.: 151-04424-00

SUITE 1200, 10909 JASPER AVE EDMONTON, AB T53 3L9

T +1 780 466 6555 F +1 780-463-0177 wsp.com

14

SIGNATURES

PREPARED BY

Blair E. Raymond, M.Sc., P.Eng. Water Resources Engineer

REVIEWED BY

PERMIT TO PRACTICE WSP CANADA INC.
Signature Date
PERMIT NUMBER: P07641 The Association of Professional Engineers and Geoscientists of Alberta

R. Vaughn Shears, P.Eng. Manager Municipal Infrastructure

This report was prepared by WSP for the account of COUNTY OF GRANDE PRAIRIE NO. 1, in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

WSP November 2017 Page iv

TABLE OF CONTENTS

٦	INTRODUCTION
1.1	General1
1.2	Location
1.3	Topography and Features1
1.4	Proposed Development2
2	WATER SERVICING
2.1	Design Parameters6
2.2	Proposed Water Servicing6
2.3	Interim Servicing7
3	SANITARY SERVICING9
3.1	Design Parameters9
3.2	Proposed Sanitary Servicing9
4	STORMWATER MANAGEMENT12
4.1	Design Parameters12
4.2	Predevelopment Flow rate12
4.3	Upstream Stormwater Management
4.4	Stormwater Management Plan15
4.5	Stormwater Quality16
5	CONCLUSIONS AND RECOMMENDATIONS21

NORTHWEST CLAIRMONT ASP SERVICING Project No. 151-04424-00 COUNTY OF GRANDE PRAIRIE NO. 1 WSP November 2017 Page v

vvsp

TABLES

6	WATER SYSTEM DESIGN PARAMETERS	TABLE 2.1
7	BOUNDARY CONDITION REQUIREMENTS	TABLE 2.2
9	SANITARY SYSTEM DESIGN PARAMETERS	TABLE 3.1
	STORMWATER MANAGEMENT DESIGN	TABLE 4.1
12	PARAMETERS	
13	WSC GAUGING STATIONS	TABLE 4.2
13	FLOOD FREQUENCY ANALYSIS RESULTS	TABLE 4.3
14	BASIN TRANSFER RESULTS	TABLE 4.4
15	STORAGE REQUIREMENTS BY LANDUSE	TABLE 4.5
	STORMWATER MANAGEMENT FACILITY	TABLE 4.6
	PRELIMINARY SIZING	

FIGURES

FIGURE 1-1	LOCATION PLAN	3
FIGURE 1-2	EXISTING TOPOGRAPHY	4
FIGURE 1-3	PROPOSED DEVELOPMENT	5
FIGURE 2-1	PROPOSED WATER SERVICING	8
FIGURE 3-1	PROPOSED SANITARY SERVICING	11
FIGURE 4-1	WATERSHED BOUNDARIES	18
FIGURE 4-2	UPSTREAM STORMWATER MANAGEMENT	19
FIGURE 4-3	PROPOSED STORMWATER	
	MANAGEMENT PLAN	20

APPENDICES

- A WATER SYSTEM DEMANDS
- **B** SANITARY SEWER CALCULATIONS
- C FLOOD FREQUENCY ANALYSIS
- D MASTER PLAN FIGURES

WSP November 2017 Page vili

INTRODUCTION

1.1 GENERAL

The following report outlines the proposed water, sanitary and stormwater servicing for the NW Clairmont Area Structure Plan (ASP). This work was undertaken by WSP on behalf of the County of Grande Prairie No. 1.

LOCATION 1.2

The NW Clairmont ASP is located approximately 10 km north of the City of Grande Prairie, immediately west of Highway 2 and north of Township Road 724 within the Hamlet of Clairmont. The location of the NW Clairmont ASP is shown in Figure 1-1.

The study area consists of approximately 1651 hectares. The study area is bounded by Highway 2 and the CN Rail line to the east, Township road 724 to the south, the quarter line half a mile west of Range Road 63 to the west, and the quarter lines half a mile and a mile north of Township Road 730 to the north. The study area generally consists of the following:

- NE, SE, and 0SW 26 72-6-6
- Section 27 72-6-6
- NE and SE 28 72-6-6
- NE and SE 33 72-6-6
- Section 34 72-6-6
- Section 35 72-6-6
- NW, portion SW and portion NE 2 73-6-6
- SE and SW 3 73-6-6
- SE 4 73-6-6

TOPOGRAPHY AND FEATURES 1.3

The topography within the study area generally grades from east to west, with the highest elevation of approximately 705 m occurring in the northeast corner of the study area and the lowest elevation of 670 m occurring along the east boundary of the study area. The existing topography is shown in Figure 1-2.

Notable features within the study area include:

- Ferguson Lake located in the southeast portion of the study area
- Unnamed drainage course coming from Clairmont Lake to the east into Ferguson Lake, and continuing through the study area to the west
- CN Rail line in the eastern portion of the study area
- Unnamed drainage courses entering the study area from the northeast and north which join the drainage course from Ferguson Lake before exiting the study area.
- **Clairmont Waste Management Facility**
- Aquatera (Clairmont) Lagoon

NORTHWEST CLAIRMONT ASP SERVICING Project No. 151-04424-00 COUNTY OF GRANDE PRAIRIE NO.1

WSP November 2017 Page 1

1.4 PROPOSED DEVELOPMENT

The proposed development consists of predominantly industrial development with a commercial development proposed for the southeast corner of the study area and some institutional developments along the southern boundary of the study area. The proposed land use plan is shown in **Figure 1**-3.

WSP November 2017 Page 2

ANSI A S:/PROJECTS/5216028000 NW CLAIRMONT ASPICADIFIGURES/ASPIFIGURE 1.1 - LOCATION PLAN Plot Date: 2017/11/16 8:48 AM By: Ma, Stellar

	116 STEET		CITY OF GRANDE PRAIRIE
CLIENT:	SCALE: 1:75000	PROJECT:	
COUNTY OF GRANDE PRAIRIE NO. 1	DESIGNED BY:	NOR	THWEST CLAIRMONT ASP SERVICING
	DRAWN BY: S.M.	TITLE:	
1150	CHECKED BY:	1	LOCATION PLAN
#1200, 10909 JA5PER AVENUE	DATE: 20170512	DRAWING NO:	ISSUE: ISS/REV:
EDMONTON, ALBERTA, CANADA T5J 3L9 TEL: 780.466.6555 FAX: 780.466.8200 www.wsp.com	PROJECT NO: 151-04424-00	FIGURE 1-1	DRAFT REPORTMAY 12, 2017A

2 WATER SERVICING

2.1 DESIGN PARAMETERS

The water system for Clairmont has been created based upon the proposed roadway plan. It is assumed that the water supply for the area will be provided from three separate pump houses and reservoirs as shown in the 2013 Water Distribution & Wastewater Collection System Master Plan (Servicing Strategy for the City of Grande Prairie and Hamlet of Clairmont) produced by Morrison Hershfield. As two of the three pump houses and reservoirs are not yet constructed, this report will outline the minimum boundary conditions required for adequate servicing in Clairmont. These boundary conditions should be taken under consideration in the design of the future pump houses and reservoirs. Boundary condition locations were assumed based upon the ultimate pipe network shown in the aforementioned master plan. The ultimate pipe network can be seen on **Figure 7.2B** in **Appendix D**.

The parameters used in developing the proposed water distribution system and in the hydraulic network analysis are listed in **Table 2-1** below. These parameters are generally consistent with the county of Grand Prairie's Minimum Design Standards. The demands calculated for the system are included in **Table A-1** located in **Appendix A**.

Table 2.1 Water System Design Parameters

	PARAMETER	VALUE
	Average Day Demand	20,000 L/ha/day
Industrial Demand	Maximum Day Demand	30,000 L/ha/day
	Peak Hour Demand	40,000 L/ha/day
	Average Day Demand	30,000 L/ha/day
Institutional Demand	Maximum Day Demand	45,000 L/ha/day
	Peak Hour Demand	60,000 L/ha/day
	Average Day Demand	20,000 L/ha/day
Commercial Demand	Maximum Day Demand	30,000 L/ha/day
	Peak Hour Demand	40,000 L/ha/day
Minimum Pressures	Peak Hour	280 kPa
Minimum Pressures	Max Daily + Fire Flow	140 kPa
Maximum Pressure		690 kPa
Friction Coefficient	Hazen Williams "C"	140
Minimum Pipe Size		250 mm

2.2 PROPOSED WATER SERVICING

The proposed water distribution system was generally delineated following the pressure zones boundaries shown in Figure 7.1 from the Master Plan (Appendix D) with the following adjustments:

WSP November 2017 Page 6

- The C3/C2 boundary north of Ferguson Lake was shifted to the west to allow for improved looping in the C-2 area.
- The portion of the study area which lies within the Emmerson Trickle zone to the north was shifted into the C-2
 pressure zone and as a result will require a 225 L/s fire flow.

The water distribution system generally consists of 300 mm diameter watermains in the south pressure zone (C-1), 300-350mm diameter watermains in the west pressure zone (C-3), and 250-400 mm diameter watermains in the northeast pressure zone (C-1). The proposed water distribution system is shown in **Figure 2-1**. Boundary conditions in each pressure zone were adjusted to meet the minimum pressure and flow requirements under the Average Day Demand (ADD), Peak Hour Demand (PHD) and Max Daily Demand + Fire Flow (MDD+FF) scenarios. The required boundary conditions are shown below in **Table 2-2**.

ZONE RESERVOIR **ELEVATION** ADD MDD+FF PHD (m) (m) (m) (m) R-1 676.0 708.0 719.0 709.0 C-3 R-2 670.6 708.0 719.0 709.0 C-2 R-3 717.4 743.0 733.0 744.0 R-4 692.0 710.0 713.0 711.0 C-1 R-5 684.3 710.0 713.0 711.0

Table 2.2 Boundary Condition Requirements

High pressures were experienced in the southwest portion of Zone C-2 for the ADD and PHD scenarios and under select fire flow scenarios. This is a result of the low elevations at these locations. These areas should be further reviewed during the design of the future pump house and reservoir that will service C-2 to determine whether pressure reducing valves will be required. Areas with pressures between 550 kPa and 690 kPa are highlighted in **Figure 2-1**.

2.3 INTERIM SERVICING

It is understood that there is development interest in the southwest corner of the ASP area. The reservoir and water network for the ultimate servicing of this portion of the ASP area will not be available in the short term. It may be possible to extend service west along Township Road 724 from zone C-1.

Analysis of interim servicing options for individual developments should be conducted by the developer directly with Aquatera. This analysis will require boundary conditions from Aquatera to determine the feasibility of getting the required flows and pressures in the southwest corner by extending the system along Township Road 724.

It should be noted that Aquatera standards state the maximum length of un-looped watermain is 150m.

NORTHWEST CLAIRMONT ASP SERVICING Project No. 151-04424-00 COUNTY OF GRANDE PRAIRIE NO. 1 WSP November 2017 Page 7

SANITARY SERVICING 3

DESIGN PARAMETERS 3.1

The sewer system for the Northwest Clairmont ASP has been created based on the proposed roadway plan for the area and the general system layout shown in the Master Plan, refer to Figure 8.2 and Figure 8.7 in Appendix D for the ultimate Master Plan sanitary servicing. It is assumed that the existing lagoon located in the NW 10-72-3 W6M will remain. The parameters used in developing the proposed sanitary servicing plan are listed below in Table 3-1. These parameters are generally consistent with Aquatera's Sanitary Sewer System Standards.

Sanitary System Design Parameters Table 3.1

PARAMETER	VALUE
Commercial Flow Generation	20,000 L/ha/d
Industrial (Light) Flow Generation	10,000 L/ha/d
Institutional Flow Generation	15,000 L/ha/d
Peaking Factor	2 < 6.659 (Q _{avg}) ^{-0.168} < 5
Infiltration	0.28 L/s/ha
Sag Manholes Inflow	0.40 L/s/MH
Manning's roughness "n"	0.013
Required Design Flow (Pipe Capacity)	Design Flow 0.864
Minimum Velocity	0.6 m/s
Maximum Velocity	3.0 m/s

In order to include for sag manhole inflow the number of sag manholes were estimated based on 1 sag manhole for every 5 hectares of land serviced.

PROPOSED SANITARY SERVICING 3.2

As shown in the Master Plan there are two locations where the proposed system for the study area will receive flows from future development outside the study area. These future development areas include:

- Approximately 820 ha of industrial development north of Township Road 730 in the Mercer Hill and Emerson Trail ASPs
- Approximately 384 ha of industrial development south of Township Road 724 at Range Road 63

The proposed sanitary servicing has assumed that the proposed lift station 10 (LS10) will be situated along Township Road 724 south of the Aquatera Lagoons in the vicinity of the quarter line between SE and SW 27-6-6.

The proposed sanitary collection system consists of gravity sewer mains and a lift station located in the SE ¼ 33-72-6-6 that generally services the lands along the west boundary of the study area in NE 33, SE 33 and NE 28. The proposed sanitary servicing plan is shown in Figure 3-1. Detailed sanitary calculations are included in Appendix B.

Another option for the lift station along the west boundary of the study area would be the use of a low pressure sanitary system for the lower areas along that would be serviced by the lift station. The potential low pressure sewer service area is also shown in Figure 3-1.

There are several locations where the gravity sewer reaches depths of 9 metres or greater, these location include:

- MH5 to MH4 on Range Road 63 at Township Road 724 and MH4 to LS 10 on Township Road 724. At this point the
 ground is rising to the south in the direct of flow in the gravity sewer.
- MH4A to MH4 on Township Road 724 at Range Road 63. This is another example where the ground is rising in the direct of flow in the gravity sewer. Options for this sewer would be the use of a lift station or low pressure sewer to service SE 28 72-6-6, discharging to the gravity sewer at MH4.
- MH15 to MH16 starting at Township Road 730 south of the Mercer Hill ASP area. The sewer needs to be deep at this location to areas to the north the lands in the Mercer Hill ASP also fall to the north of this location. In order to make the sanitary sewer shallower the sanitary sewer from Mercer Hill and north would have to follow contours closer to the CN Rail line, or connect via a pump station in the Mercer Hill area.

It should be noted that the sewer that will provide capacity for the areas north of this study area will have to coordinate with servicing for the Mercer Hill ASP to ensure it is deep enough to provide gravity servicing to the areas north.

WSP November 2017 Page 10

4 STORMWATER MANAGEMENT

4.1 DESIGN PARAMETERS

The design parameters used in developing the stormwater management system for the Northwest Clairmont ASP are listed below in **Table 4-1**. These parameters are generally consistent with the County of Grande Prairie's Minimum Design Standards.

Table 4.1 Stormwater Management Design Parameters

PARAMETER	VALUE
Commercial Imperviousness	80%
Industrial Imperviousness	75%
Institutional Imperviousness	70%
Manning's n for Impervious areas	0.015
Manning's n for Pervious areas	0.25
Depression storage for Impervious areas	2 mm
Depression storage for Impervious areas	5 mm
Maximum infiltration rate	15 mm/hr
Minimum infiltration rate	3 mm/hr
Infiltration decay rate	4.14 /hr

Design of stormwater management facilities are to be determined based on the largest storage requirement of the following three design storms.

- 4 hour Chicago distribution
- 12 hour AES (Atmospheric Environment Service) distribution
- 24 hour SCS (Soil Conservation Service) distribution

4.2 PREDEVELOPMENT FLOW RATE

There currently is no release rate specified for stormwater management purposes for the Northwest Clairmont area, therefore, the predevelopment flow rate will be used for determining preliminary stormwater management requirements. The predevelopment flow rate was estimated by performing a flood frequency analysis on gauged streams of a similar nature to the study area.

A flood frequency analysis considers the annual peak flows at a gauging site for the available years of record. This analysis provides the magnitudes of flood peaks of a desired recurrence interval or return period, but does not provide information on the hydrograph or flow volumes.

WSP November 2017 Page 12

The frequency analysis involves a statistical analysis of measured stream flow data in order to determine design floods based on a specified allowable risk. It typically involves an analysis of annual flood peaks. The maximum instantaneous peak discharge is preferred for the analysis.

Five gauging stations were selected for the purpose of this analysis, these gauges, and their pertinent information, is shown below in **Table 4-2**. The hydrometric data for these gauging stations was obtained from the Water Survey of Canada's archived hydrometric data.

Table 4.2 WSC Gauging Stations

STATION NUMBER	STATION NAME	PERIOD OF RECORD	DRAINAGE AREA (km²)
07FD912	Montagneuse River near Hines Creek	1975-2014	230
07FD910	Rycroft Survey No. 3 near Rycroft	1982-2011	13.0
07GD001	Beaverlodge River near Beaverlodge	1968-2013	1,610
07GE003	Grande Prairie Creek near Sexsmith	1969-2014	140
07GE007	Bear River near Valhalla Centre	1984-2013	181

The flood frequency analysis performed with a Log Pearson Type III distribution results in 1:100 year flow rates as shown in **Table 4-3**. The flood frequency calculations are:

Table 4.3 **Flood Frequency Analysis Results** STATION 1:100 YEAR **BASIN UNIT AREA** FLOW NUMBER STATION NAME DISHCARGE (m^3/s) (L/s/ha) 07FD912 Montagneuse River near Hines 36.8 1.60 Creek Rycroft Survey No. 3 near Rycroft 07FD910 9.8 7.52 07GD001 Beaverlodge River near 177.0 1.10 Beaverlodge Grande Prairie Creek near 07GE003 46.6 3.33

0,02000	Sexsmith		
07GE007	Bear River near Valhalla Centre	49.6	2.74

In order to use these flow rates for the Northwest Clairmont ASP, a Basin Transfer technique must be used. In this technique the discharge is adjusted by the ratio of the drainage basin areas using a power exponent, typically 0.85. This is shown in the equation below:

$$Q_u = Q_g \left(rac{A_u}{A_g}
ight)^n$$

NORTHWEST CLAIRMONT ASP SERVICING Project No. 151-04424-00 COUNTY OF GRANDE PRAIRIE NO. 1 WSP November 2017 Page 13 Where: Q_u = Ungauged site

 Q_q = Gauged site

 A_u = Ungauged drainage basin area

 A_g = Gauged drainage basin area

n = exponent

As previously shown on the topography plan in **Figure 1-2**, there is drainage entering the study area from the north and northeast. The basin area used for the predevelopment flow calculation is 49. km², and is shown in **Figure 4-1**. The resulting discharge rates transferred to this basin are shown in **Table 4-4**. The detailed basin transfer results are included in **Appendix C**.

Table 4.4 Basin Transfer Results

STATION NUMBER	STATION NAME	BASIN UNIT AREA DISHCARGE (L/s/ha)	SITE UNIT DISHCARGE (L/s/ha)
07FD912	Montagneuse River near Hines Creek	1.60	2.02
07FD910	Rycroft Survey No. 3 near Rycroft	7.52	6.16
07GD001	Beaverlodge River near Beaverlodge	1.10	1.85
07GE003	Grande Prairie Creek near Sexsmith	3.33	3.90
07GE007	Bear River near Valhalla Centre	2.74	3.33
		Average	3.45

The average of the basin transfer results shown in **Table 4**-4 is 3.45 L/s/ha. Based on these calculations a discharge rate of 3.4 L/s/ha will be used for the Northwest Clairmont ASP.

4.3 UPSTREAM STORMWATER MANAGEMENT

There are also several ASPs for lands adjacent to and upstream of the Northwest Clairmont ASP area that will contribute flows to the study area and downstream. These areas include:

Clairmont Heights ASP

- Mercer Hill ASP
- Emerson Trail ASP

In general the stormwater from these areas will be contained in stormwater management facilities within the plan areas and released at predevelopment flow rates. These stormwater discharges as well as the runoff from undeveloped areas will pass through the Northwest Clairmont ASP area in the existing watercourses and wetlands. The proposed stormwater management in the adjacent plan areas is shown in **Figure 4-2**.

4.4 STORMWATER MANAGEMENT PLAN

Utilizing a release rate of 3.4 L/s/ha and the design parameters indicated in Section 4.1, the storage requirements for each landuse were determined by modeling the landuse with PCSWMM, the resulting storage requirements for each landuse are shown in **Table 4**-5. The storage requirements were determined for the three design storms provided in the County's standards with the largest value used for facility sizing, with the discharge rate utilized the 1:100 year 24 hour SCS storm resulted in the largest storage requirement.

Table 4.5 Storage Requirements by Landuse

LANDUSE	STORAGE REQUIREMENT (m³/ha)
Commercial	732
Industrial	707
Institutional	683

The landuse for each stormwater management facility (SWMF)/storm catchment was then used to determine the storage requirements for that facility. The storage requirement was then used to determine a preliminary area required for each SWMF based on the following criteria.

- 1.5 m depth of storage for the 1:100 year event (Storage depths will need to be confirmed at the time of development when site grading is known)
- Side slopes of 7:1 (horizontal:vertical)
- 1.0 m freeboard (at the time of development this may be reduced if there is an adequate overflow available)
- 4:1 length to width ratio

Table 4.6

The resulting storage requirements and areas required are shown in in **Table 4-6**, and the proposed stormwater management plan is shown in **Figure 4-3**. It should be noted that the SWMF locations shown in **Figure 4-3** are preliminary and may change with detailed planning and design.

SWMF	STORAGE REQUIREMENT (m ³)	APPROXIMATE AREA REQUIRED (ha)
CI	4,600	0.80
C2	41,300	3.90
C3	17,500	2.00
C4	14,900	1.75
C5	10,800	1.40
C6	42,400	4.00
C7	29,500	3.00
C8	6,000	0.95
C9	16,900	1.95

Stormwater Management Facility Preliminary Sizing

NORTHWEST CLAIRMONT ASP SERVICING Project No. 151-04424-00 COUNTY OF GRANDE PRAIRIE NO. 1 WSP November 2017 Page 15

C10	6,100	0.95
C11	24,200	2.55
C12	5,600	0.90
C13	55,100	5.00
C14	28,600	2.90
C15	47,000	4.35
C16	20,100	2.20
C17	6,700	1.00
C18	62,800	5.60
C19	33,500	3.30
C20	19,100	2.10
C21	42,800	4.05
C22	7,400	1.10
C23	27,400	2.80
C24	22,100	2.35
C25	9,200	1.25

It should be noted that the values in **Table 4**-6 have not accounted for the incorporation of retained wetlands within the development. In order for retained wetlands to remain viable after development of the surrounding lands they will need to be incorporated into the drainage system to ensure they receive an adequate amount of water.

At the time of development when the detailed planning is being conducted and the site grading is being reviewed the pond locations and available storage depths will need to be reviewed.

4.5 STORMWATER QUALITY

Currently the minimum stormwater quality standard set by Alberta Environment in the Municipal Policies and Procedures Manual is to remove 85% of sediment with a particle size of 75 µm or larger. It is expected that all new developments will meet this standard.

The use of wet ponds or wetlands is generally preferred for providing the required stormwater quality improvement prior to discharge to receiving water courses. The permanent pool in these facilities slows the runoff entering the facility, provides a place for the suspended sediments to settle and helps reduce the re-suspension of sediments by subsequent storm events. Also, the facilities should be designed so that runoff entering the facility doesn't enter in close proximity to the outlet in order to increase the residence time for settlement of solids. Adding vegetation, especially in wetlands enhances the removal of some constituents, typically nutrients from stormwater.

Dry ponds typically do not provide the water quality improvement and therefore need additional treatment. This treatment can be accomplished by routing the discharge from a dry pond through a wet pond or wetland downstream in the system prior to discharge to a water body or receiving stream. Another option is to use an oil/grit separator in conjunction with the dry pond to manage both stormwater quality and quantity.

Other Best Management Practices (BMPs) that could be utilized on individual lots are listed below.

 <u>Impervious Area Reduction</u>: Reducing the impervious area will reduce the volume of stormwater runoff and consequently the volume of storage required. Achieving the impervious area reduction can be accomplished by

WSP November 2017 Page 16

reducing parking stall requirements, reducing road widths, porous surfaces such as paving stones etc. Items such as reducing parking stall requirements or reducing road widths may require alternate planning or engineering standards in order to implement.

- <u>Infiltration Facilities:</u> The use of infiltration facilities such as rain gardens, biofilter swales, infiltration trenches etc., can reduce the volume of runoff and provide groundwater recharge. A geotechnical investigation would be required for any site proposing to use these systems to confirm suitability for infiltration.
- <u>Impervious Area Redirection</u>: Directing runoff from impervious areas or roof leaders to a pervious area where it infiltrates into the soil or across a vegetated surface where it is filtered prior to reaching a drainage system.
- <u>Absorbent Landscaping</u>: Absorbent landscaping can be used to mimic pre-development landscape functions. Soils, plants and organic mulch are utilized to reduce the amount of stormwater runoff and promote evaporation and infiltration.

NORTHWEST CLAIRMONT ASP SERVICING Project No. 151-04424-00 COUNTY OF GRANDE PRAIRIE NO. 1 WSP November 2017 Page 17

<u>0.0</u>

2.2

A

ISS/REV:

Α

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

This report presents proposed servicing schemes for water distribution, sanitary collection and stormwater management in support of the Northwest Clairmont ASP.

- Water service for the study area can be provided as shown in Figure 2-1.
- Sanitary servicing can be provided with gravity sewers and two lift stations as shown in Figure 3-1, although there are several locations where the sewer would be over 9 metres deep.
- Stormwater management can be provided by following the stormwater management plan shown in Figure 4-1.
- Prior to development submission will have to be made to Alberta Environment and Parks to determine if the province will claim any wetlands within the development area.

5.2 RECOMMENDATIONS

As development occurs in the Northwest Clairmont ASP area the following is recommended.

- Coordinate the sanitary sewer design on the east side of Ferguson Lake with the servicing requirements for the Mercer Hill and Emerson Trail ASPs.
- Consider utilizing low pressure sanitary sewer to service select areas along the west boundary of the ASP to reduce the need for local lift stations or deep gravity sewers.
- Review stormwater pond location and available storage depth when the site grading is being conducted.

NORTHWEST CLAIRMONT ASP SERVICING Project No. 151-04424-00 COUNTY OF GRANDE PRAIRIE NO. 1 WSP November 2017 Page 21

6 BIBLIOGRAPHY

- Aquatera (2017). Design Manual. Retrieved April 19, 2017 from Aquatera: https://aquatera.ca/services/engineering-development/standards-and-guidelines/
- Bearsto Lehners Ketchum Engineering Ltd. (2011, July). Mercer Hill Area Structure Plan.
- ISL Engineering and Land Services (2009, March). Emerson Trail Area Structure Plan.
- Morrison Hershfield (2015, May). 2013 Water Distribution and Wastewater Collection System Master Plan.
- Parioplan (2012, November). Clairmont Heights Area Structure Plan.

WSP November 2017 Page 22

APPENDIX

A WATER SYSTEM DEMANDS

Node	Elevation	Area	Landuse	ADD	MDD	PHD	Required FF
J-1	672.3	33.35	Industrial	7.72	11.58	15.44	225
J-2	674.2	N/A	Industrial	N/A	N/A	N/A	N/A
J-3	674.5	N/A	Industrial	N/A	N/A	N/A	N/A
J-5	672.3	10.03	Industrial	2.32	3.48	4.64	225
J-6	679	44.57	Industrial	10.32	15.48	20.63	225
J-7	680.7	N/A	Industrial	N/A	N/A	N/A	N/A
J-8	684.8	4.32	Industrial	1.00	1.50	2.00	225
J-10	675.2	10.42	Industrial	2.41	3.62	4.82	225
J-11	672.7	10.11	Industrial	2.34	3.51	4.68	225
J-12	673.3	34.09	Industrial	7.89	11.84	15.78	225
J-13	676.3	44.44	Industrial	10.29	15.43	20.57	225
J-15	676.6	27.54	Industrial	6.38	9.56	12.75	225
J-16	675.2	35.7	Industrial	8.26	12.40	16.53	225
J-18	686	37.07	Industrial	8.58	12.87	17.16	225
J-19	678	53.66	Industrial	12.42	18.63	24.84	225
J-22	678.5	38.24	Industrial	8.85	13.28	17.70	225
J-24	684	N/A	Industrial	N/A	N/A	N/A	N/A
J-25	687.5	20.31	Industrial	4.70	7.05	9.40	225
J-27	683.4	45.67	Industrial	10.57	15.86	21.14	225
J-28	684.1	31.12	Industrial	7.20	10.81	14.41	225
J-29	698.4	59.65	Industrial	13.81	20.71	27.62	225
J-32	710	N/A	Industrial	N/A	N/A	N/A	N/A
J-34	672	N/A	Industrial	N/A	N/A	N/A	N/A
J-35	678.4	41.86	Industrial	9.69	14.53	19.38	225
J-36	678.6	21.21	Industrial	4.91	7.36	9.82	225
J-37	676	N/A	Industrial	N/A	N/A	N/A	N/A
J-38	675.6	32.5	Industrial	7.52	11.28	15.05	225
J-39	682.3	37.9	Industrial	8.77	13.16	17.55	225
J-41	687.1	3.73	Industrial	0.86	1.30	1.73	225
J-42	691.3	13.73	Industrial	3.18	4.77	6.36	225
J-43	698	31.85	Industrial	7.37	11.06	14.75	225
J-44	676.4	54.52	Commercial	12.62	18.93	25.24	225
J-45	681.3	32.21	Commercial	7.46	11.18	14.91	225
J-46	679.4	21.25	Institutional	7.38	11.07	14.76	225
J-49	676.1	0	N/A	0	0.00	0.00	0
J-50	678.52	0	N/A	0	0.00	0.00	0

APPENDIX

B SANITARY SEWER CALCULATIONS

PROJECT: NW Clairmont Area Structure Plan

JOB No. :	151-04424-00	Residential Flow =	275 L/person/day	Residential I/I =	0.28 L/s/ha
DATE :	6-Nov-17	Commercial Flow =	0.12 L/s/ha	Comm./Ind. I/I =	0.28 L/s/ha
COMPUTED BY :	RT	Industrial Flow =	0.12 L/s/ha	Sag MH Inflow =	0.4 L/s/ha
CHECKED BY:	BR				

	Pipe Iden	tification			Рор	ulation & Are	ea Calculatio	ins		1					Peak	Flow Calcula	ation							Pi	pe Informati	on			6 61		Eleval	tions		
Line	Manho	le No.	Zoning	(ontributing	Area, Lots, or	r Building m ²	2	Popul	lation	Ba	ase Flow (m	³ /s)	Peaking	g Factor	New	Total	Peak	1/1	Design	Required	Pipe	Pipe			Capacity	Full	Design	Upper	Lower	Upper	Lower	Upper	Lower
No.	From	To	Code	Area	Total Res	Total Ind	Lots	Building	New	Total	Residential	Com /	Ind Flow	Us	se	Sag MH's	Sag MH's	Flow	Total	Flow	Flow	Length	Diameter	Slope	Capacity	Used	Velocity	Velocity	Rim	Rim	Invert	Invert	Cover	Cover
s				(ha)	Area	Area	each	m ² or bed	persons	persons	Total	New	Total	Com / Ind	Res.	70329020	10.85	(m³/s)	(m ³ /s)	(m³/s)	(m³/s)	(m)	(mm)	(%)	(m ³ /s)	(%)	(m/s)	(m/s)	(m)	(m)	(m)	(m)	(m)	(m)
			ly																										Pr					
1	MH13	MH12	MEDIND	63.81	0	63.81			#N/A	0	0.0000	0.0148	0.0148	4.24	3.00	13	13	0.0626	0.0231	0.0856	0.0996	819	375	0.35	0.104	82.48%	0.939	1.049	687.12	684.76	681.686	678.819	5.060	5.566
1	MH12	MH11	MEDIND	0	0	63.81			#N/A	0	0.0000	0.0000	0.0148	4.24	3.00	0	13	0.0626	0.0231	0.0856	0.0996	657	375	0.35	0.104	82.48%	0.939	1.049	684.76	682.25	678.399	676.100	5.986	5.775
1	MH11	MH10	Medind Hvyind	23.55 43	0	87.36 130.36			#N/A #N/A	0	0.0000	0.0055	0.0202 0.0302	4.02 3.76	3.00 3.00	5	18 27	0.0813 0.1134	0.0317 0.0473	0.1129 0.1607	0.1313 0.1868	169	450	0.80	0.255	62.94%	1.603	1.694	682.25	680.54	675.740	674.388	6.060	5.702
. . .	MUTT	WILTO	IN LINU	۹J	U	130.30			#IWA	v	0.0000	0.0100	0.0302	3.70	5.00	3	21	0.1134	0.0475	0.1007	0.1000	105	430	0.00	0.233	02.54/0	1.005	1.054	002-23	000.34	0/3.140	0/4.300	0.000	5.702
1	MH14	MH10	HVYIND	27.9	0	27.9			#N/A	0	0.0000	0.0065	0.0065	4.87	3.00	6	6	0.0314	0.0102	0.0416	0.0484	814	300	0.60	0.075	55.55%	1.060	1.087	685.75	680.54	679.572	674.688	5.878	5.552
		255.054.043																			1.092542								111.2-10.24					27.0854
1	MH10	MH10A	HVYIND	0	0	158.26			#N/A	0	0.0000	0.0000	0.0366	3.64	3.00	0	33	0.1332	0.0575	0.1907	0.2218	440	450	0.70	0.239	79.88%	1.500	1.665	680.54	675.89	674.268	671.188	5.822	4.252
1	MIHOA	NUS	HWYIND	8.2	0	166.46			#N/A	0	0.0000	0.0009	0.0376	3.62	3.00	2	35	0.1361	0.0606	0.1967	0.2287	171	535	0.70	0.300	77 550/	1(0)	1 010	(75.00	(74.00	(70.040	CC0 227	4 410	F 110
1	MH10A	MH9	HVYIND	80	0	246.46			#N/A	U	0.0000	0.0185	0.0561	3.39	3.00	16	51	0.1899	0.0894	0.2793	0.3248	373	525	0.70	0.360	77.55%	1.662	1.836	675.89	674.00	670.948	668.337	4.418	5.139
1			HWYIND	5.4	0	5.4			#N/A	0	0.0000	0.0006	0.0006	5.00	3.00	1	1	0.0031	0.0019	0.0050	0.0059													
1	MH9A	MH9	MEDIND	31.8	0	37.2			#N/A	0	0.0000	0.0074	0.0080	4.70	3.00	6	7	0.0375	0.0132	0.0507	0.0590	399	375	0.20	0.078	64.63%	0.710	0.754	672.00	674.00	669.270	668.472	2.356	5.154
34571											and other																							
1			HWYIND	29.05	0	29.05			#N/A	0	0.0000	0.0034	0.0034	5.00	3.00	6	6	0.0168	0.0105	0.0273	0.0318	-	75.4		0.447	04.4001	0.010		(7) 44	(70.44	FF0 405	100 410		
1	MH9	MH8	MEDIND	16.45	0	329.16 337.76			#N/A #N/A	0	0.0000	0.0038	0.0713 0.0723	3.25 3.24	3.00 3.00	3	67 69	0.2317 0.2344	0.1190 0.1222	0.3507 0.3566	0.4078	701	750	0.14	0.417	84.10% 85.52%	0.943 0.943	1.056	674.00 672.00	672.00	668.097 666.755	667.115 665.994	5.154	4.135 4.257
1	MH8 MH6	MH6 MH5	hwyind Hwyind	8.6 8.3	0	346.06			#N/A #N/A	0	0.0000	0.0010	0.0725	3.24	3.00	2	09 71	0.2344	0.1222	0.3500	0.4146 0.4213	544 977	750 750	0.14	0.417 0.432	83.94%	0.945	1.059 1.093	672.00	671.00 672.10	665.694	664.228	4.495 4.557	4.257
	mile			0.0	Č	510.00			anyre	v		0.0010	0.07.02		5.00	3. * 5	8. * 3	0.2070	0.1250	0.5025	0.1220	577		0.25	0.102	0010114	0.010	1.000	01200	072.20	005.051	ou need	1.557	
1			HWYIND	7.2	0	7.2			#N/A	0	0.0000	0.0008	0.0008	5.00	3.00	1	1	0.0042	0.0024	0.0066	0.0077													
1	MH7	MH5	MEDIND	87.7	0	94.9			#N/A	0	0.0000	0.0203	0.0211	3.99	3.00	18	19	0.0843	0.0342	0.1185	0.1378	685	450	0.60	0.221	53.59%	1.389	1.412	675.80	672.10	672.248	668.138	3.102	3.512
1911			-			153.36			max fa											0.1594	0.5304		000		0.533			4 004	(77) (4)	676 GD	cc2 c22			43.035
1	MH5	MH4	HWYIND	16.8	0	457.76			#N/A	0	0.0000	0.0019	0.0963	3.09	3.00	3	93	0.2977	0.1654	0.4631	0.5384	1013	900	0.10	0.573	80.81%	0.900	1.001	672.10	676.60	663.688	662.675	7.512	13.025
1			HWYIND	18.5	0	18.5			#N/A	0	0.0000	0.0021	0.0021	5.00	3.00	4	4	0.0107	0.0068	0.0175	0.0203													
1	MH4A	MH4	MEDIND	46	0	64.5			#N/A	0	0.0000	0.0106	0.0128	4.34	3.00	9	13	0.0555	0.0233	0.0788	0.0916	597	375	0.32	0.099	79.33%	0.898	0.996	671.80	676.60	668.570	666.660	2.855	9.565
	South	MH4	IND	384	0	384			#N/A	0	0.0000	0.0444	0.0444	3.52	3.00	77	77	0.1565	0.1383	0.2948	0.3428													
1	MH4	L.S. 10 west	IND	0	0	906.26			#N/A	0	0.0000	0.0000	0.1535	2.86	3.00	0	183	0.4388	0.3270	0.7658	0.8905	814	900	0.25	0.906	84.52%	1.423	1.595	676.60	672.00	662.135	660.100	13.565	11.000
																													-					
2			HWYIND	40.7	0	40.7					0.0000	0.0047	0.0047	5.00	3.00	8	8	0.0236	0.0146	0.0381	0.0444													
2	MH15A	MH16	HVYIND	40.5	0	81.2			#N/A	0	0.0000	0.0094	0.0141	4.27	3.00	8	16	0.0601	0.0291	0.0893	0.1038	830	300	3.00	0.168	53.25%	2.370	2.405	706.00	675.90	697.217	672.317	8.483	3.283
-	Malak	Autor	IND	010.0	0	010.0			gas / A	٥	0.0000	0.0050	0.0050	2.40	1.00	10	101	0 2044	0.0004	0 0000	0.0000										602 220			
2	North MH15	MH15 MH14A	ind hvyind	820.8 14.0	0	820.8 834.8			#N/A #N/A	0	0.0000	0.0950	0.0950 0.0982	3.10 3.08	3.00 3.00	104	164 167	0.2944	0.2954	0.5898 0.6032	0.6858 0.7014	750	900	1.00	1.812	33.29%	2.846	2.560	714.00	690.59	692.370 692.588	685.088	20.512	4.602
2	MH14A	MH14	HWIND	30.8	0	865.6			#N/A	0	0.0000	0.0052	0.1054	3.05	3.00	6	107	0.3209	0.3116	0.6324	0.7354	610	900	1.00	1.812	34.90%	2.846	2.593	690.59	685.75	684.668	678.568	5.022	6.282
2	MH14	MH16A	HVYIND	0	0	865.6			#N/A	0	0.0000	0.0000	0.1054	3.05	3.00	0	173	0.3209	0.3116	0.6324	0.7354	600	900	1.00	1.812	34.90%	2.846	2.593	685.75	676.10	678.208	672.208	6.642	2.992
2	MH16A	MH16	HVYIND	105.55	0	971.15			#N/A	0	0.0000	0.0244	0.1298	2.94	3.00	21	194	0.3816	0.3495	0.7312	0.8502	1351	1050	0.12	0.947	77.22%	1.092	1.206	676.10	675.90	671.908	670.287	3.142	4.563
- Sa.				222	2	1000.00			100 x 7 x							.13				0.000											600 ere			
2	MH16	MH17	HWYIND	7.63	0	1059.98			#N/A	0	0.0000	0.0009	0.1448	2.89	3.00	2	212	0.4179	0.3816	0.7995	0.9297	1187	1050	0.12	0.947	84.43%	1.092	1.224	675.90	674.10	669.567	668.143	5.283	4.907
2	MH17	MH17A	COM	13.1	0	1073.08			#N/A	٥	0.0000	0.0015	0.1463	2.88	3.00	3	215	0.4216	0.3865	0.8080	0.9396	59	1050	0.12	0.947	85.33%	1.092	1.226	674.10	673.20	667.543	667.472	5.507	4.678
2	MH17A	MH18	COM	0	0	1073.08			#N/A	0	0.0000	0.0000	0.1463	2.88	3.00	0	215	0.4216	0.3865	0.8080	0.9396	895	1050	0.12	0.947	85.33%	1.092	1.226	673.20	673.40	667.412	666.338	4.738	6.012
2	MH18	MH19	COM	73.3	0	1146.38			#N/A	0	0.0000	0.0085	0.1548	2.85	3.00	15	230	0.4418	0.4130	0.8548	0.9939	801	1050	0.14	1.023	83.58%	1.180	1.320	673.40	674.70	665.858	664.737	6.492	8.913
2	MH19	MH20	COM	0	0	1146.38			#N/A	0	0.0000	0.0000	0.1548	2.85	3.00	0	230	0.4418	0.4130	0.8548	0.9939	1028	1050	0.14	1.023	83.58%	1.180	1.320	674.70	672.50	664.317	662.877	9.333	8.573
2	MH20	L.S. 10 east	INST	21.7	0	1168.08			#N/A	0	0.0000	0.0038	0.1585	2.84	3.00	4	234	0.4507	0.4207	0.8714	1.0133	241	1050	0.14	1.023	85.20%	1.180	1.324	672.50	672.00	662.337	662.000	9.113	8.950
																						-												

Notes: 1. Required Flow = Design Flow (Peak Wet Weather Flow) / 0.86.

2. Design velocity is the partial flow velocity for the design flow based on the pipe design (diameter, slope, etc.).

3. Minimum depth of cover is 2.75m to top of pipe.

4. Minimum velocity is 0.6, maximum velocity is 3.

5. At manholes obverts have been matched. Minimum invert drops at manholes of 20 mm for straight runs and 50 mm for deflections have been used.

FREQUENCY ANALYSIS

Frequency Analysis and Basin Transfer - Gage Summary County of Grande Prairie Northwest Clairmont ASP - WSP Project Number 151-04424-00 Site Drainage Area = 49.3000 km²

5. C.		1.122								
- 3/	Gage Data		1:2 Year Flood	(Instantaned	ous)	Basin 7	Fransfer	Site unit area discharge		
WSC Hydrometric Station	Stream Name	Number of Records	Effective Drainage Area (km²)	Q ₂ from LP3 (m ³ /s)	Gage unit area discharge, q (m ³ /s/km ²)	Coefficient	Q to site scale (m ³ /s)	Site unit area discharge, q (m ³ /s/km ²)	Site unit area discharge, q (L/s/ha)	
07FD012	Montagneuse River near Hines Creek	37	230.0	5.550	0.0241	0.85	1.499	0.0304	0.304	
07FD910	Rycroft Survey No. 3 near Rycroft	30	13.0	1.180	0.0908	0.85	3.664	0.0743	0.743	
07GD001	Beaverlodge River near Beaverlodge	45	1610.0	26.908	0.0167	0.85	1.390	0.0282	0.282	
07GE003	Grande Prairie Creek near Sexsmith	43	139.7	10.297	0.0737	0.85	4.248	0.0862	0.862	
07GE007	Bear River near Valhalla Centre	28	181.0	8.702	0.0481	0.85	2.881	0.0584	0.584	
1		1				Average	2.7364	0.0555	0.555	
							9.3 km² Basin (m³/s L/s)	2.736	2736.426	

								0.555	
	Gage Data		1:5 Year Flood	l (Instantanec	ous)	Basin T	Fransfer	Site unit area discharge	
WSC Hydrometric Stream Name		Number of Records	Effective Drainage Area (km²)	Q₅ from LP3 (m ³ /s)	Gage unit area discharge, q (m ³ /s/km ²)	Coefficient	Q to site scale (m ³ /s)	Site unit area discharge, q (m ³ /s/km ²)	Site unit area discharge, q (L/s/ha)
07FD012	Montagneuse River near Hines Creek	37	230.0	13.475	0.0586	0.85	3.639	0.074	0.738
07FD910	Rycroft Survey No. 3 near Rycroft	30	13.0	3.083	0.237	0.85	9.572	0.1942	1.942
07GD001	Beaverlodge River near Beaverlodge	45	1610.0	61.912	0.038	0.85	3.198	0.0649	0.649
07GE003	Grande Prairie Creek near Sexsmith	43	139.7	19.530	0.140	0.85	8.057	0.1634	1.634
07GE007	Bear River near Valhalla Centre	28	181	20.125	0.111	0.85	6.662	0.1351	1.351
					J/	Average	6.2258	0.126	1.263
						Discharge (Q5) at 4 and	9.3 km ² Basin (m ³ /s L/s)	6.226	6225.778

	Gage Data		1:10 Year Flood	d (Instantane/	ous)	Basin T	Transfer	Site unit ar	rea discharge	
WSC Hydrometric Station	Stream Name	Number of Records	Effective Drainage Area (km²)	Q ₁₀ from LP3 (m ³ /s)	Gage unit area discharge, q (m ³ /s/km ²)	Coefficient	Q to site scale (m ³ /s)	Site unit area discharge, q (m ³ /s/km ²)	Site unit area discharge, q (L/s/ha)	
07FD012	Montagneuse River near Hines Creek	37	230.0	19.438	0.085	0.85	5.249	0.106	1.065	
07FD910	Rycroft Survey No. 3 near Rycroft	30	13.0	4.641	0.357	0.85	14.409	0.292	2.923	
07GD001	Beaverlodge River near Beaverlodge	45	1610.0	89.080	0.055	0.85	4.601	0.093	0.933	
07GE003	Grande Prairie Creek near Sexsmith	43	139.7	26.118	0.187	0.85	10.775	0.219	2.186	
07GE007	Bear River near Valhalla Centre	28	181	28.190	0.156	0.85	9.332	0.189	1.893	
				· '	· · · · · · · · · · · · · · · · · · ·	Average	8.8736	0.180	1.800	
							49.3 km² Basin (m³/s I L/s)	8.874	8873.623	

	Gage Data	10	1:25 Year Floor	d (Instantane	ous)	Basin 1	ransfer	Site unit area discharge		
WSC Hydrometric Station	Stream Name	Number of Records	Effecti∨e Drainage Area (km²)	Q ₂₅ from LP3 (m ³ /s)	Gage unit area discharge, q (m ³ /s/km ²)	Coefficient	Q to site scale (m ³ /s)	Site unit area discharge, q (m ³ /s/km ²)	Site unit area discharge, q (L/s/ha)	
07FD012	Montagneuse River near Hines Creek	37	230.0	26.891	0.117	0.85	7.262	0.147	1.473	
07FD910	Rycroft Survey No. 3 near Rycroft	30	13.0	6.732	0.518	0.85	20.902	0.424	4.240	
07GD001	Beaverlodge River near Beaverlodge	45	1610.0	124.862	0.078	0.85	6.450	0.131	1.308	
07GE003	Grande Prairie Creek near Sexsmith	43	139.7	34.507	0.247	0.85	14.237	0.289	2.888	
07GE007	Bear River near Valhalla Centre	28	181	37.730	0.208	0.85	12.491	0.253	2.534	
						Average	12.2682	0.249	2.488	
						(1) The second s Second second s Second second s Second second s Second second se	49.3 km ² Basin (m ³ /s L/s)	12.268	12268.202	

Gage Data			1:50 Year Floo	d (Instantane	ous)	Basin T	ransfer	Site unit area discharge		
WSC Hydrometric	Stream Name	Number of	Effective Drainage	Q ₅₀ from LP3	Gage unit area discharge, q	Coefficient	Q to site scale	Site unit area discharge, q	Site unit area discharge, q	

Station		Records	Area (km.)	(m ⁻ /s)	(m ³ /s/km ²)		(m /s)	(m ³ /s/km ²)	(L/s/ha)
07FD012	Montagneuse River near Hines Creek	37	230.0	32.076	0.139	0.85	8.662	0.176	1.757
07FD910	Rycroft Survey No. 3 near Rycroft	30	13.0	8.284	0.637	0.85	25.724	0.522	5.218
07GD001	Beaverlodge River near Beaverlodge	45	1610.0	151.331	0.094	0.85	7.817	0.159	1.586
07GE003	Grande Prairie Creek near Sexsmith	43	139.7	40.637	0.291	0.85	16.766	0.340	3.401
07GE007	Bear River near Valhalla Centre	28	181	44.035	0.243	0.85	14.578	0.296	2.957
						Average	17.193	0.349	3.487
							19.3 km² Basin (m³/s L/s)	17.193	17192.959

19 -										
	Gage Data		1:100 Year Floo	od (Instantane	ous)	Basin T	ransfer	Site unit area discharge		
WSC Hydrometric Station	Stream Name	Number of Records	Gross Drainage Area (km²)	Q ₁₀₀ from LP3 (m ³ /s)	Gage unit area discharge, q (m ³ /s/km ²)	Coefficient	Q to site scale (m ³ /s)	Site unit area discharge, q (m ³ /s/km ²)	Site unit area discharge, q (L/s/ha)	
07FD012	Montagneuse River near Hines Creek	37	230.0	36.824	0.160	0.85	9.945	0.202	2.017	
07FD910	Rycroft Survey No. 3 near Rycroft	30	13.0	9.782	0.752	0.85	30.375	0.616	6.161	
07GD001	Beaverlodge River near Beaverlodge	45	1610.0	176.982	0.110	0.85	9.142	0.185	1.854	
07GE003	Grande Prairie Creek near Sexsmith	43	139.7	46.583	0.333	0.85	19.219	0.390	3.898	
07GE007	Bear River near Valhalla Centre	28	181.0	49.568	0.274	0.85	16.409	0.333	3.328	
						Average	17.018	0.345	3.452	
							49.3 km² Basin (m³/s L/s)	17.018	17018.002	

APPENDIX

D MASTER PLAN FIGURES

O:\proj\4130083\AK\Drawings\4130083 - FIG 7.1 - Ultimate Water Network.dwg - Kmehmood - May 20, 2015 - 6:09 PM

PLOTTED: May 20, 2015 - 6:11 PM

ANSI A SIZE 11"x17" (279.4mm x 431.8mm)

O:\proj\4130083\AK\Drawings\4130083 - Fig 7.2 A-H - Ultimate Network Details.dwg Kmehmood - May 20, 2015 - 12:06 PM

LEGEND:

>> = = XXS

PROPOSED PUMP HOUSE & RESERVOIR EXISTING PUMP HOUSE & RESERVOIR RESERVOIR NOT IN STUDY FIRE FLOW STORAGE PROPOSED PRV EXISTING PRV EXISTING CHECKVALVE ZONE BOUNDARIES PROPOSED LONG TERM PROPOSED MID TERM PROPOSED SHORT TERM ULTIMATE TERM

EXISTING PIPE DIAM 150mm EXISTING PIPE DIAM 200mm > 250mm EXISTING PIPE DIAM 300mm > 350mm EXISTING PIPE DIAM 400mm > 450mm EXISTING PIPE DIAM 500mm > 550mm EXISTING PIPE DIAM 600mm EXISTING PIPE DIAM 600mm EXISTING PIPE DIAM 750mm EXISTING PIPE DIAM 800mm EXISTING PIPE DIAM 900mm EXISTING PIPE DIAM 1050mm PROPOSED PIPE DIAM

2013 WATER DISTRIBUTION & WASTEWATER COLLECTION MASTER PLAN SERVICING STRATEGY FOR GRANDE PRAIRIE & CLAIRMONT

ULTIMATE NETWORK DETAILS

MORRISON HERSHFIELD

Figure 7.2B

O:\proj\4130083\MP Report\Drawings\4130083 - Fig 8.2 - Ultimate Servicing Concept - Wastewater Collection System.dwg Kmehmood - May 21, 2015 - 2:43 PM

PLOTTED: May 21, 2015 - 2:43 PM

ANSI A SIZE 11"x17" (279.4mm x 431.8mm)

O:\proj\4130083\MP Report\Drawings\4130083 - Fig 8.3 - 8.7 Ultimate Servicing Concept - Wastewater Collection Systems.dwg Kmehmood - May 21, 2015 - 2:36 PM

PLOTTED: May 21, 2015 - 2:40 PM

ANSI A SIZE 11"x17" (279.4mm x 431.8mm)

